
UPCISS

Video Tutorial
C++ Full Video Playlist Available

on
YouTube Channel UPCISS

Copyright © 2024 UPCISS

C++

Complete Tutorial with

Free PDF Notes and video

lecture.

Free Online Computer Classes on

YouTube Channel UPCISS

www.youtube.com/upciss

For free PDF Notes
Our Website: www.upcissyoutube.com

 1

Index

 C++ Introduction

 C++ Variables

 C++ Data Types

 C++ Operators

 String Concatenation

 User Input Strings

 C++ Math Functions

 C++ Conditions and If Statements

 C++ Loops

 C++ Arrays

 C++ Structures

 Creating Pointers

 C++ Functions

 Function Overloading

 Recursion

 C++ What is OOP?

 C++ Files

 C++ Exceptions

 Operator Overloading

 2

C++ Introduction

What is C++?

C++ is a cross-platform language that can be used to create high-performance

applications.

C++ was developed by Bjarne Stroustrup, as an extension to the C language.

C++ gives programmers a high level of control over system resources and

memory.

The language was updated 4 major times in 2011, 2014, 2017, and 2020 to
C++11, C++14, C++17, C++20.

Why Use C++

C++ is one of the world's most popular programming languages.

C++ can be found in today's operating systems, Graphical User Interfaces, and

embedded systems.

C++ is an object-oriented programming language which gives a clear structure to

programs and allows code to be reused, lowering development costs.

C++ is portable and can be used to develop applications that can be adapted to

multiple platforms.

C++ is fun and easy to learn!

As C++ is close to C, C# and Java, it makes it easy for programmers to switch to
C++ or vice versa.

Difference between C and C++

C++ was developed as an extension of C, and both languages have almost the

same syntax.

The main difference between C and C++ is that C++ support classes and objects,
while C does not.

Get Started

This tutorial will teach you the basics of C++.

It is not necessary to have any prior programming experience.

To start using C++, you need two things:

 3

 A text editor, like Notepad, to write C++ code
 A compiler, like GCC, to translate the C++ code into a language that the

computer will understand

There are many text editors and compilers to choose from. In this tutorial, we will

use an IDE (see below).

C++ Install IDE

An IDE (Integrated Development Environment) is used to edit AND compile the

code.

Popular IDE's include Code::Blocks, Eclipse, and Visual Studio. These are all free,

and they can be used to both edit and debug C++ code.

Note: Web-based IDE's can work as well, but functionality is limited.

We will use Code::Blocks in our tutorial, which we believe is a good place to start.

You can find the latest version of Codeblocks at http://www.codeblocks.org/.

Download the mingw-setup.exe file, which will install the text editor with a compiler.

C++ Quickstart

Let's create our first C++ file.

Open Codeblocks and go to File > New > Empty File.

Write the following C++ code and save the file as myfirstprogram.cpp (File > Save

File as):

myfirstprogram.cpp

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;
}

Don't worry if you don't understand the code above - we will discuss it in detail in

later chapters. For now, focus on how to run the code.

In Codeblocks, it should look like this:

https://www.codeblocks.org/downloads/binaries/

 4

Then, go to Build > Build and Run to run (execute) the program. The result will

look something to this:

Hello World!

Process returned 0 (0x0) execution time : 0.011 s

Press any key to continue.

Congratulations! You have now written and executed your first C++ program.

C++ Syntax

C++ Syntax

Let's break up the following code to understand it better:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 return 0;
}

Example explained

Line 1: #include <iostream> is a header file library that lets us work with input and

output objects, such as cout (used in line 5). Header files add functionality to C++

programs.

Line 2: using namespace std means that we can use names for objects and variables

from the standard library.

 5

Don't worry if you don't understand how #include <iostream> and using namespace

std works. Just think of it as something that (almost) always appears in your

program.

Line 3: A blank line. C++ ignores white space. But we use it to make the code
more readable.

Line 4: Another thing that always appear in a C++ program, is int main(). This is

called a function. Any code inside its curly brackets {} will be executed.

Line 5: cout (pronounced "see-out") is an object used together with the insertion

operator (<<) to output/print text. In our example it will output "Hello World!".

Note: Every C++ statement ends with a semicolon ;.

Note: The body of int main() could also been written as:
int main () { cout << "Hello World! "; return 0; }

Remember: The compiler ignores white spaces. However, multiple lines makes the

code more readable.

Line 6: return 0 ends the main function.

Line 7: Do not forget to add the closing curly bracket } to actually end the main

function.

Omitting Namespace

You might see some C++ programs that runs without the standard namespace
library. The using namespace std line can be omitted and replaced with

the std keyword, followed by the :: operator for some objects:

Example

#include <iostream>

int main() {

 std::cout << "Hello World!";

 return 0;
}

It is up to you if you want to include the standard namespace library or not.

C++ Output (Print Text)

The cout object, together with the << operator, is used to output values/print text:

Example

#include <iostream>

using namespace std;

 6

int main() {

 cout << "Hello World!";

 return 0;

}

You can add as many cout objects as you want. However, note that it does not

insert a new line at the end of the output:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!";

 cout << "I am learning C++";

 return 0;

}

New Lines

To insert a new line, you can use the \n character:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World! \n";

 cout << "I am learning C++";

 return 0;

}

Tip: Two \n characters after each other will create a blank line:

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World! \n\n";

 cout << "I am learning C++";

 return 0;
}

Another way to insert a new line, is with the endl manipulator:

 7

Example

#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!" << endl;

 cout << "I am learning C++";

 return 0;

}

Both \n and endl are used to break lines. However, \n is most used.

But what is \n exactly?

The newline character (\n) is called an escape sequence, and it forces the cursor

to change its position to the beginning of the next line on the screen. This results in
a new line.

Examples of other valid escape sequences are:

Escape Sequence Description

\t Creates a horizontal tab

\\ Inserts a backslash character (\)

\" Inserts a double quote character

C++ Comments

Comments can be used to explain C++ code, and to make it more readable. It can

also be used to prevent execution when testing alternative code. Comments can be
singled-lined or multi-lined.

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by the compiler (will not be

executed).

Multi-line comments start with /* and ends with */.

Any text between /* and */ will be ignored by the compiler:

C++ Variables

Variables are containers for storing data values.

In C++, there are different types of variables (defined with different keywords),

for example:

 8

 int - stores integers (whole numbers), without decimals, such as 123 or -

123

 double - stores floating point numbers, with decimals, such as 19.99 or -

19.99

 char - stores single characters, such as 'a' or 'B'. Char values are surrounded

by single quotes

 string - stores text, such as "Hello World". String values are surrounded by

double quotes

 bool - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, specify the type and assign it a value:

Syntax

type variableName = value;

Where type is one of C++ types (such as int), and variableName is the name of

the variable (such as x or myName). The equal sign is used to assign values to

the variable.

To create a variable that should store a number, look at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;
cout << myNum;

You can also declare a variable without assigning the value, and assign the value

later:

Example

int myNum;

myNum = 15;

cout << myNum;

Note that if you assign a new value to an existing variable, it will overwrite the

previous value:

Example

int myNum = 15; // myNum is 15

myNum = 10; // Now myNum is 10

cout << myNum; // Outputs 10

Other Types

 9

A demonstration of other data types:

Example

int myNum = 5; // Integer (whole number without decimals)

double myFloatNum = 5.99; // Floating point number (with decimals)

char myLetter = 'D'; // Character

string myText = "Hello"; // String (text)
bool myBoolean = true; // Boolean (true or false)

Display Variables

The cout object is used together with the << operator to display variables.

To combine both text and a variable, separate them with the << operator:

Example

int myAge = 35;

cout << "I am " << myAge << " years old.";

Declare Many Variables

To declare more than one variable of the same type, use a comma-separated list:

Example

int x = 5, y = 6, z = 50;

cout << x + y + z;

One Value to Multiple Variables

You can also assign the same value to multiple variables in one line:

Example

int x, y, z;

x = y = z = 50;

cout << x + y + z;

Token

When the compiler is processing the source code of a C++ program, each group of

characters separated by white space is called a token. Tokens are the smallest
individual units in a program. A C++ program is written using tokens. It has the

following tokens:

 10

Keywords

Keywords (also known as reserved words) have special meanings to the C++
compiler and are always written or typed in short (lower) cases. Keywords are

words that the language uses for a special purpose, such as void, int, public, etc. It
can’t be used for a variable name or function name or any other identifiers. The

total count of reserved keywords is 95. Below is the table for some commonly used
C++ keywords.

C++ Identifiers

All C++ variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum,
totalVolume).

Note: It is recommended to use descriptive names in order to create
understandable and maintainable code:

 11

Example

// Good

int minutesPerHour = 60;

// OK, but not so easy to understand what m actually is

int m = 60;

The general rules for naming variables are:

 Names can contain letters, digits and underscores
 Names must begin with a letter or an underscore (_)

 Names are case-sensitive (myVar and myvar are different variables)

 Names cannot contain whitespaces or special characters like !, #, %, etc.

 Reserved words (like C++ keywords, such as int) cannot be used as names

Constants

When you do not want others (or yourself) to change existing variable values, use

the const keyword (this will declare the variable as "constant", which

means unchangeable and read-only):

Example

const int myNum = 15; // myNum will always be 15

myNum = 10; // error: assignment of read-only variable 'myNum'

You should always declare the variable as constant when you have values that are

unlikely to change:

Example

const int minutesPerHour = 60;

const float PI = 3.14;

When you declare a constant variable, it must be assigned with a value:

Example

Like this:

const int minutesPerHour = 60;

This however, will not work:

const int minutesPerHour;

minutesPerHour = 60; // error

The constant variables in c are immutable after its definition, i.e., they can be

initialized only once in the whole program. After that, we cannot modify the value
stored inside that variable.

 12

C++ User Input

You have already learned that cout is used to output (print) values. Now we will

use cin to get user input.

cin is a predefined variable that reads data from the keyboard with the extraction

operator (>>).

In the following example, the user can input a number, which is stored in the
variable x. Then we print the value of x:

Example

int x;

cout << "Type a number: "; // Type a number and press enter

cin >> x; // Get user input from the keyboard
cout << "Your number is: " << x; // Display the input value

Good To Know

cout is pronounced "see-out". Used for output, and uses the insertion operator (<<)

cin is pronounced "see-in". Used for input, and uses the extraction operator (>>)

Creating a Simple Calculator

In this example, the user must input two numbers. Then we print the sum by

calculating (adding) the two numbers:

Example

int x, y;

int sum;

cout << "Type a number: ";

cin >> x;

cout << "Type another number: ";

cin >> y;

sum = x + y;
cout << "Sum is: " << sum;

C++ Data Types

As explained in the Variables chapter, a variable in C++ must be a specified data

type:

Example

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99; // Floating point number

 13

double myDoubleNum = 9.98; // Floating point number

char myLetter = 'D'; // Character

bool myBoolean = true; // Boolean

string myText = "Hello"; // String

Basic Data Types

The data type specifies the size and type of information the variable will store:

Data Type Size Description

boolean 1 byte Stores true or false values

char 1 byte Stores a single character/letter/number, or ASCII values

int 2 or 4 bytes Stores whole numbers, without decimals

float 4 bytes Stores fractional numbers, containing one or more decimals. Sufficient

for storing 6-7 decimal digits

double 8 bytes Stores fractional numbers, containing one or more decimals. Sufficient

for storing 15 decimal digits

Numeric Types

Use int when you need to store a whole number without decimals, like 35 or 1000,

and float or double when you need a floating point number (with decimals), like

9.99 or 3.14515.

int

int myNum = 1000;
cout << myNum;

float

float myNum = 5.75;
cout << myNum;

double

double myNum = 19.99;

cout << myNum;

float vs. double

The precision of a floating point value indicates how many digits the value can
have after the decimal point. The precision of float is only six or seven decimal

digits, while double variables have a precision of about 15 digits. Therefore it is

safer to use double for most calculations.

 14

Boolean Types

A boolean data type is declared with the bool keyword and can only take the

values true or false.

When the value is returned, true = 1 and false = 0.

Example

bool isCodingFun = true;

bool isFishTasty = false;

cout << isCodingFun; // Outputs 1 (true)

cout << isFishTasty; // Outputs 0 (false)

Character Types

The char data type is used to store a single character. The character must be

surrounded by single quotes, like 'A' or 'c':

Example

char myGrade = 'B';
cout << myGrade;

Alternatively, if you are familiar with ASCII, you can use ASCII values to display

certain characters:

Example

char a = 65, b = 66, c = 67;

cout << a;

cout << b;

cout << c;

String Types

The string type is used to store a sequence of characters (text). This is not a built-

in type, but it behaves like one in its most basic usage. String values must be

surrounded by double quotes:

Example

string greeting = "Hello";
cout << greeting;

To use strings, you must include an additional header file in the source code,

the <string> library:

 15

Example

// Include the string library

#include <string>

// Create a string variable

string greeting = "Hello";

// Output string value

cout << greeting;

C++ Operators

An operator is a symbol that operates on a value to perform specific mathematical
or logical computations. They form the foundation of any programming language.

In C++, we have built-in operators to provide the required functionality.

An operator operates the operands.

In the example below, we use the + operator to add together two values:

Example

int x = 100 + 50;

Although the + operator is often used to add together two values, like in the

example above, it can also be used to add together a variable and a value, or a
variable and another variable:

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

C++ divides the operators into the following groups:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Ternary or Conditional Operators

Arithmetic Operators

 16

Arithmetic operators are used to perform common mathematical operations.

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the

value 10 to a variable called x:

Example

int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example

int x = 10;
x += 5;

A list of all assignment operators:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

 17

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Comparison Operators

Comparison operators are used to compare two values (or variables). This is

important in programming, because it helps us to find answers and make decisions.

The return value of a comparison is either 1 or 0, which means true (1)

or false (0). These values are known as Boolean values, and you will learn more

about them in the Booleans and If..Else chapter.

In the following example, we use the greater than operator (>) to find out if 5 is

greater than 3:

Example

int x = 5;

int y = 3;

cout << (x > y); // returns 1 (true) because 5 is greater than 3

A list of all comparison operators:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical Operators

As with comparison operators, you can also test for true (1) or false (0) values

with logical operators.

Logical operators are used to determine the logic between variables or values:

Operator Name Description Example

 18

&& Logical and Returns true if both statements are true x < 5 && x < 10

|| Logical or Returns true if one of the statements is true x < 5 || x < 4

! Logical not Reverse the result, returns false if the result is true !(x < 5 && x < 10)

Bitwise Operators

Bitwise Operators are the operators that are used to perform operations on the bit

level on the integers. While performing this operation integers are considered as
sequences of binary digits. In C++, we have various types of Bitwise Operators.

1. Bitwise AND (&)
2. Bitwise OR (|)

3. Bitwise XOR (^)
4. Bitwise NOT (~)

5. Left Shift (<<)
6. Right Shift (>>)

// C++ Program to demonstrate
// Bitwise Operator
#include <iostream>

using namespace std;

// Main function
int main()
{
 int a = 5; // 101
 int b = 3; // 011

 // Bitwise AND
 int bitwise_and = a & b;

 // Bitwise OR
 int bitwise_or = a | b;

 // Bitwise XOR
 int bitwise_xor = a ^ b;

 // Bitwise NOT
 int bitwise_not = ~a;

 // Bitwise Left Shift
 int left_shift = a << 2;

 // Bitwise Right Shift
 int right_shift = a >> 1;

 // Printing the Results of
 // Bitwise Operators
 cout << "AND: " << bitwise_and << endl;
 cout << "OR: " << bitwise_or << endl;
 cout << "XOR: " << bitwise_xor << endl;
 cout << "NOT a: " << bitwise_not << endl;

 19

 cout << "Left Shift: " << left_shift << endl;
 cout << "Right Shift: " << right_shift << endl;

 return 0;
}

Output:
AND: 1
OR: 7
XOR: 6
NOT a: -6
Left Shift: 20
Right Shift: 2

String Concatenation

The + operator can be used between strings to add them together to make a new

string. This is called concatenation:

Example

string firstName = "John ";

string lastName = "Doe";

string fullName = firstName + lastName;

cout << fullName;

In the example above, we added a space after firstName to create a space between

John and Doe on output. However, you could also add a space with quotes (" " or '

'):

Example

string firstName = "John";

string lastName = "Doe";

string fullName = firstName + " " + lastName;
cout << fullName;

Append

A string in C++ is actually an object, which contain functions that can perform

certain operations on strings. For example, you can also concatenate strings with
the append() function:

Example

string firstName = "John ";

string lastName = "Doe";

string fullName = firstName.append(lastName);

cout << fullName;

Adding Numbers and Strings

 20

WARNING!

C++ uses the + operator for both addition and concatenation.

Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example

int x = 10;

int y = 20;

int z = x + y; // z will be 30 (an integer)

If you add two strings, the result will be a string concatenation:

Example

string x = "10";

string y = "20";

string z = x + y; // z will be 1020 (a string)

If you try to add a number to a string, an error occurs:

Example

string x = "10";

int y = 20;
string z = x + y;

String Length

To get the length of a string, use the length() function:

Example

string txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << "The length of the txt string is: " << txt.length();

Tip: You might see some C++ programs that use the size() function to get the

length of a string. This is just an alias of length(). It is completely up to you if you

want to use length() or size():

Example

string txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << "The length of the txt string is: " << txt.size();

Access Strings

You can access the characters in a string by referring to its index number inside

square brackets [].

 21

This example prints the first character in myString:

Example

string myString = "Hello";

cout << myString[0];

// Outputs H

Note: String indexes start with 0: [0] is the first character. [1] is the second

character, etc.

This example prints the second character in myString:

Example

string myString = "Hello";

cout << myString[1];

// Outputs e

Change String Characters

To change the value of a specific character in a string, refer to the index number,

and use single quotes:

Example

string myString = "Hello";

myString[0] = 'J';

cout << myString;
// Outputs Jello instead of Hello

Strings - Special Characters

Because strings must be written within quotes, C++ will misunderstand this string,
and generate an error:

string txt = "We are the so-called "Vikings" from the north.";

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string characters:

Escape character Result Description

\' ' Single quote

\" " Double quote

\\ \ Backslash

 22

The sequence \" inserts a double quote in a string:

Example

string txt = "We are the so-called \"Vikings\" from the north.";

The sequence \' inserts a single quote in a string:

Example

string txt = "It\'s alright.";

The sequence \\ inserts a single backslash in a string:

Example

string txt = "The character \\ is called backslash.";

User Input Strings

It is possible to use the extraction operator >> on cin to store a string entered by a

user:

Example

string firstName;

cout << "Type your first name: ";

cin >> firstName; // get user input from the keyboard

cout << "Your name is: " << firstName;

// Type your first name: John

// Your name is: John

However, cin considers a space (whitespace, tabs, etc) as a terminating character,

which means that it can only store a single word (even if you type many words):

Example

string fullName;

cout << "Type your full name: ";

cin >> fullName;

cout << "Your name is: " << fullName;

// Type your full name: John Doe
// Your name is: John

From the example above, you would expect the program to print "John Doe", but it

only prints "John".

 23

That's why, when working with strings, we often use the getline() function to read

a line of text. It takes cin as the first parameter, and the string variable as second:

Example

string fullName;

cout << "Type your full name: ";

getline (cin, fullName);

cout << "Your name is: " << fullName;

// Type your full name: John Doe
// Your name is: John Doe

C++ Math

C++ has many functions that allows you to perform mathematical tasks on

numbers.

Max and min

The max(x,y) function can be used to find the highest value of x and y:

Example

cout << max(5, 10);

And the min(x,y) function can be used to find the lowest value of x and y:

Example

cout << min(5, 10);

C++ <cmath> Header

Other functions, such as sqrt (square root), round (rounds a number)

and log (natural logarithm), can be found in the <cmath> header file:

Example

// Include the cmath library

#include <cmath>

cout << sqrt(64);

cout << round(2.6);

cout << log(2);

C++ Math Functions

 24

The <cmath> library has many functions that allow you to perform mathematical

tasks on numbers.

A list of all math functions can be found in the table below:

Function Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

acosh(x) Returns the hyperbolic arccosine of x

asin(x) Returns the arcsine of x, in radians

asinh(x) Returns the hyperbolic arcsine of x

atan(x) Returns the arctangent of x as a numeric value between -PI/2

and PI/2 radians

atan2(y, x) Returns the angle theta from the conversion of rectangular

coordinates (x, y) to polar coordinates (r, theta)

atanh(x) Returns the hyperbolic arctangent of x

cbrt(x) Returns the cube root of x

ceil(x) Returns the value of x rounded up to its nearest integer

copysign(x,

y)

Returns the first floating point x with the sign of the second

floating point y

cos(x) Returns the cosine of x (x is in radians)

cosh(x) Returns the hyperbolic cosine of x

exp(x) Returns the value of Ex

exp2(x) Returns the value of 2x

expm1(x) Returns ex-1

erf(x) Returns the value of the error function at x

erfc(x) Returns the value of the complementary error function at x

fabs(x) Returns the absolute value of a floating x

fdim(x) Returns the positive difference between x and y

floor(x) Returns the value of x rounded down to its nearest integer

fma(x, y, z) Returns x*y+z without losing precision

fmax(x, y) Returns the highest value of a floating x and y

https://www.w3schools.com/cpp/ref_math_abs.asp
https://www.w3schools.com/cpp/ref_math_acos.asp
https://www.w3schools.com/cpp/ref_math_acosh.asp
https://www.w3schools.com/cpp/ref_math_asin.asp
https://www.w3schools.com/cpp/ref_math_asinh.asp
https://www.w3schools.com/cpp/ref_math_atan.asp
https://www.w3schools.com/cpp/ref_math_atan2.asp
https://www.w3schools.com/cpp/ref_math_atanh.asp
https://www.w3schools.com/cpp/ref_math_cbrt.asp
https://www.w3schools.com/cpp/ref_math_ceil.asp
https://www.w3schools.com/cpp/ref_math_cos.asp
https://www.w3schools.com/cpp/ref_math_cosh.asp
https://www.w3schools.com/cpp/ref_math_exp.asp
https://www.w3schools.com/cpp/ref_math_fabs.asp
https://www.w3schools.com/cpp/ref_math_floor.asp
https://www.w3schools.com/cpp/ref_math_fma.asp
https://www.w3schools.com/cpp/ref_math_fmax.asp

 25

fmin(x, y) Returns the lowest value of a floating x and y

fmod(x, y) Returns the floating point remainder of x/y

frexp(x, y) With x expressed as m*2n, returns the value of m (a value

between 0.5 and 1.0) and writes the value of n to the memory

at the pointer y

hypot(x, y) Returns sqrt(x2 +y2) without intermediate overflow or underflow

ilogb(x) Returns the integer part of the floating-point base logarithm of

x

ldexp(x, y) Returns x*2y

lgamma(x) Returns the logarithm of the absolute value of the gamma

function at x

llrint(x) Rounds x to a nearby integer and returns the result as a long

long integer

llround(x) Rounds x to the nearest integer and returns the result as a long

long integer

log(x) Returns the natural logarithm of x

log10(x) Returns the base 10 logarithm of x

log1p(x) Returns the natural logarithm of x+1

log2(x) Returns the base 2 logarithm of the absolute value of x

logb(x) Returns the floating-point base logarithm of the absolute value

of x

lrint(x) Rounds x to a nearby integer and returns the result as a long

integer

lround(x) Rounds x to the nearest integer and returns the result as a long

integer

modf(x, y) Returns the decimal part of x and writes the integer part to the

memory at the pointer y

nan(s) Returns a NaN (Not a Number) value

nearbyint(x) Returns x rounded to a nearby integer

nextafter(x,

y)

Returns the closest floating point number to x in the direction of

y

nexttoward(x,

y)

Returns the closest floating point number to x in the direction of

y

pow(x, y) Returns the value of x to the power of y

https://www.w3schools.com/cpp/ref_math_fmin.asp
https://www.w3schools.com/cpp/ref_math_fmod.asp
https://www.w3schools.com/cpp/ref_math_hypot.asp
https://www.w3schools.com/cpp/ref_math_log.asp
https://www.w3schools.com/cpp/ref_math_log10.asp
https://www.w3schools.com/cpp/ref_math_log2.asp
https://www.w3schools.com/cpp/ref_math_pow.asp

 26

remainder(x,

y)

Return the remainder of x/y rounded to the nearest integer

remquo(x, y,

z)

Calculates x/y rounded to the nearest integer, writes the result

to the memory at the pointer z and returns the remainder.

rint(x) Returns x rounded to a nearby integer

round(x) Returns x rounded to the nearest integer

scalbln(x, y) Returns x*Ry (R is usually 2)

scalbn(x, y) Returns x*Ry (R is usually 2)

sin(x) Returns the sine of x (x is in radians)

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of x (x is in radians)

tanh(x) Returns the hyperbolic tangent of x

tgamma(x) Returns the value of the gamma function at x

trunc(x) Returns the integer part of x

C++ Conditions and If Statements

You already know that C++ supports the usual logical conditions from

mathematics:

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

 Equal to a == b

 Not Equal to: a != b

You can use these conditions to perform different actions for different decisions.

C++ has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is

true
 Use else to specify a block of code to be executed, if the same condition is

false
 Use else if to specify a new condition to test, if the first condition is false

 Use switch to specify many alternative blocks of code to be executed

https://www.w3schools.com/cpp/ref_math_remainder.asp
https://www.w3schools.com/cpp/ref_math_remainder.asp
https://www.w3schools.com/cpp/ref_math_round.asp
https://www.w3schools.com/cpp/ref_math_sin.asp
https://www.w3schools.com/cpp/ref_math_sinh.asp
https://www.w3schools.com/cpp/ref_math_sqrt.asp
https://www.w3schools.com/cpp/ref_math_tan.asp
https://www.w3schools.com/cpp/ref_math_tanh.asp
https://www.w3schools.com/cpp/ref_math_trunc.asp

 27

The if Statement

Use the if statement to specify a block of C++ code to be executed if a condition

is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an

error.

In the example below, we test two values to find out if 20 is greater than 18. If the

condition is true, print some text:

Example

if (20 > 18) {

 cout << "20 is greater than 18";
}

We can also test variables:

Example

int x = 20;

int y = 18;

if (x > y) {

 cout << "x is greater than y";

}

The else Statement

Use the else statement to specify a block of code to be executed if the condition

is false.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

Example

int time = 20;

if (time < 18) {

 28

 cout << "Good day.";

} else {

 cout << "Good evening.";

}

// Outputs "Good evening."

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2

is true

} else {

 // block of code to be executed if the condition1 is false and condition2

is false

}

Example

int time = 22;

if (time < 10) {

 cout << "Good morning.";

} else if (time < 20) {

 cout << "Good day.";

} else {

 cout << "Good evening.";

}

// Outputs "Good evening."

Short Hand If...Else (Ternary Operator)

There is also a short-hand if else, which is known as the ternary

operator because it consists of three operands. It can be used to replace multiple
lines of code with a single line. It is often used to replace simple if else statements:

Syntax

variable = (condition) ? expressionTrue : expressionFalse;

Instead of writing:

Example

int time = 20;

if (time < 18) {

 29

 cout << "Good day.";

} else {

 cout << "Good evening.";

}

You can simply write:

Example

int time = 20;

string result = (time < 18) ? "Good day." : "Good evening.";
cout << result;

C++ Switch Statements

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

 The switch expression is evaluated once

 The value of the expression is compared with the values of each case
 If there is a match, the associated block of code is executed
 The break and default keywords are optional, and will be described later in

this chapter

The example below uses the weekday number to calculate the weekday name:

Example

int day = 4;

switch (day) {

 case 1:

 cout << "Monday";

 break;

 case 2:

 cout << "Tuesday";

 break;

 case 3:

 cout << "Wednesday";

 break;

 30

 case 4:

 cout << "Thursday";

 break;

 case 5:

 cout << "Friday";

 break;

 case 6:

 cout << "Saturday";

 break;

 case 7:

 cout << "Sunday";

 break;

}
// Outputs "Thursday" (day 4)

The break Keyword

When C++ reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the block.

When a match is found, and the job is done, it's time for a break. There is no need
for more testing.

A break can save a lot of execution time because it "ignores" the execution of all
the rest of the code in the switch block.

ADVERTISEMENT

The default Keyword

The default keyword specifies some code to run if there is no case match:

Example

int day = 4;

switch (day) {

 case 6:

 cout << "Today is Saturday";

 break;

 case 7:

 cout << "Today is Sunday";

 break;

 default:

 cout << "Looking forward to the Weekend";

}

// Outputs "Looking forward to the Weekend"

 31

C++ Loops

Loops can execute a block of code as long as a specified condition is reached.

Loops are handy because they save time, reduce errors, and they make code more

readable.

C++ While Loop

The while loop loops through a block of code as long as a specified condition is true:

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as long as
a variable (i) is less than 5:

Example

int i = 0;

while (i < 5) {

 cout << i << "\n";

 i++;

}

Note: Do not forget to increase the variable used in the condition, otherwise the
loop will never end!

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block

once, before checking if the condition is true, then it will repeat the loop as long as

the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at least

once, even if the condition is false, because the code block is executed before the
condition is tested:

 32

Example

int i = 0;

do {

 cout << i << "\n";

 i++;

}
while (i < 5);

C++ For Loop

When you know exactly how many times you want to loop through a block of code,

use the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {

 cout << i << "\n";

}

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the
condition is true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been
executed.

Another Example

This example will only print even values between 0 and 10:

 33

Example

for (int i = 0; i <= 10; i = i + 2) {

 cout << i << "\n";

}

Nested Loops

It is also possible to place a loop inside another loop. This is called a nested loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

// Outer loop

for (int i = 1; i <= 2; ++i) {

 cout << "Outer: " << i << "\n"; // Executes 2 times

 // Inner loop

 for (int j = 1; j <= 3; ++j) {

 cout << " Inner: " << j << "\n"; // Executes 6 times (2 * 3)

 }

}

The foreach Loop

There is also a "for-each loop" (introduced in C++ version 11 (2011), which is

used exclusively to loop through elements in an array (or other data sets):

Syntax

for (type variableName : arrayName) {

 // code block to be executed

}

The following example outputs all elements in an array, using a "for-each loop":

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i : myNumbers) {

 cout << i << "\n";

}

Note: Don't worry if you don't understand the example above. You will learn more

about arrays in the C++ Arrays chapter.

https://www.w3schools.com/cpp/cpp_arrays.asp

 34

C++ Break

You have already seen the break statement used in an earlier chapter of this

tutorial. It was used to "jump out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 cout << i << "\n";

}

C++ Continue

The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 cout << i << "\n";
}

C++ Arrays

Arrays are used to store multiple values in a single variable, instead of declaring

separate variables for each value.

To declare an array, define the variable type, specify the name of the array

followed by square brackets and specify the number of elements it should store:

string cars[4];

We have now declared a variable that holds an array of four strings. To insert

values to it, we can use an array literal - place the values in a comma-separated
list, inside curly braces:

https://www.w3schools.com/cpp/cpp_switch.asp

 35

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Access the Elements of an Array

You access an array element by referring to the index number inside square

brackets [].

This statement accesses the value of the first element in cars:

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cout << cars[0];

// Outputs Volvo

Note: Array indexes start with 0: [0] is the first element. [1] is the second
element, etc.

Change an Array Element

To change the value of a specific element, refer to the index number:

cars[0] = "Opel";

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

cout << cars[0];

// Now outputs Opel instead of Volvo

Loop Through an Array

You can loop through the array elements with the for loop.

The following example outputs all elements in the cars array:

Example

string cars[5] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};

for (int i = 0; i < 5; i++) {

 cout << cars[i] << "\n";

}

https://www.w3schools.com/cpp/cpp_for_loop.asp

 36

This example outputs the index of each element together with its value:

Example

string cars[5] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};

for (int i = 0; i < 5; i++) {

 cout << i << " = " << cars[i] << "\n";

}

And this example shows how to loop through an array of integers:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i = 0; i < 5; i++) {

 cout << myNumbers[i] << "\n";

}

The foreach Loop

There is also a "for-each loop" (introduced in C++ version 11 (2011), which is

used exclusively to loop through elements in an array:

Syntax

for (type variableName : arrayName) {

 // code block to be executed

}

The following example outputs all elements in an array, using a "for-each loop":

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i : myNumbers) {

 cout << i << "\n";
}

Omit Array Size

In C++, you don't have to specify the size of the array. The compiler is smart

enough to determine the size of the array based on the number of inserted values:

string cars[] = {"Volvo", "BMW", "Ford"}; // Three array elements

The example above is equal to:

 37

string cars[3] = {"Volvo", "BMW", "Ford"}; // Also three array elements

However, the last approach is considered as "good practice", because it will reduce

the chance of errors in your program.

Omit Elements on Declaration

It is also possible to declare an array without specifying the elements on

declaration, and add them later:

Example

string cars[5];

cars[0] = "Volvo";

cars[1] = "BMW";

...

Get the Size of an Array

To get the size of an array, you can use the sizeof() operator:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

cout << sizeof(myNumbers);

Result:

20

Why did the result show 20 instead of 5, when the array contains 5 elements?

It is because the sizeof() operator returns the size of a type in bytes.

You learned from the Data Types chapter that an int type is usually 4 bytes, so

from the example above, 4 x 5 (4 bytes x 5 elements) = 20 bytes.

To find out how many elements an array has, you have to divide the size of

the array by the size of the data type it contains:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

int getArrayLength = sizeof(myNumbers) / sizeof(int);

cout << getArrayLength;

Result:

5

 38

Loop Through an Array with sizeof()

In the Arrays and Loops Chapter, we wrote the size of the array in the loop
condition (i < 5). This is not ideal, since it will only work for arrays of a specified

size.

However, by using the sizeof() approach from the example above, we can now

make loops that work for arrays of any size, which is more sustainable.

Instead of writing:

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i = 0; i < 5; i++) {

 cout << myNumbers[i] << "\n";
}

It is better to write:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i = 0; i < sizeof(myNumbers) / sizeof(int); i++) {

 cout << myNumbers[i] << "\n";

}

Note that, in C++ version 11 (2011), you can also use the "for-each" loop:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};

for (int i : myNumbers) {

 cout << i << "\n";

}

It is good to know the different ways to loop through an array, since you may

encounter them all in different programs.

Multi-Dimensional Arrays

A multi-dimensional array is an array of arrays.

To declare a multi-dimensional array, define the variable type, specify the name of
the array followed by square brackets which specify how many elements the main

array has, followed by another set of square brackets which indicates how many
elements the sub-arrays have:

string letters[2][4];

 39

As with ordinary arrays, you can insert values with an array literal - a comma-
separated list inside curly braces. In a multi-dimensional array, each element in an

array literal is another array literal.

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

Each set of square brackets in an array declaration adds another dimension to an
array. An array like the one above is said to have two dimensions.

Arrays can have any number of dimensions. The more dimensions an array has,
the more complex the code becomes. The following array has three dimensions:

string letters[2][2][2] = {

 {

 { "A", "B" },

 { "C", "D" }

 },

 {

 { "E", "F" },

 { "G", "H" }

 }

};

Access the Elements of a Multi-Dimensional

Array

To access an element of a multi-dimensional array, specify an index number in

each of the array's dimensions.

This statement accesses the value of the element in the first row (0) and third
column (2) of the letters array.

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

cout << letters[0][2]; // Outputs "C"

Remember that: Array indexes start with 0: [0] is the first element. [1] is the

second element, etc.

 40

Change Elements in a Multi-Dimensional

Array

To change the value of an element, refer to the index number of the element in
each of the dimensions:

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

letters[0][0] = "Z";

cout << letters[0][0]; // Now outputs "Z" instead of "A"

Loop Through a Multi-Dimensional Array

To loop through a multi-dimensional array, you need one loop for each of the

array's dimensions.

The following example outputs all elements in the letters array:

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 4; j++) {

 cout << letters[i][j] << "\n";

 }
}

This example shows how to loop through a three-dimensional array:

Example

string letters[2][2][2] = {

 {

 { "A", "B" },

 { "C", "D" }

 },

 {

 { "E", "F" },

 { "G", "H" }

 }

};

 41

for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 cout << letters[i][j][k] << "\n";

 }

 }
}

Why Multi-Dimensional Arrays?

Multi-dimensional arrays are great at representing grids. This example shows a

practical use for them. In the following example we use a multi-dimensional array
to represent a small game of Battleship:

Example

// We put "1" to indicate there is a ship.

bool ships[4][4] = {

 { 0, 1, 1, 0 },

 { 0, 0, 0, 0 },

 { 0, 0, 1, 0 },

 { 0, 0, 1, 0 }

};

// Keep track of how many hits the player has and how many turns they have

played in these variables

int hits = 0;

int numberOfTurns = 0;

// Allow the player to keep going until they have hit all four ships

while (hits < 4) {

 int row, column;

 cout << "Selecting coordinates\n";

 // Ask the player for a row

 cout << "Choose a row number between 0 and 3: ";

 cin >> row;

 // Ask the player for a column

 cout << "Choose a column number between 0 and 3: ";

 cin >> column;

 // Check if a ship exists in those coordinates

 if (ships[row][column]) {

 // If the player hit a ship, remove it by setting the value to zero.

 ships[row][column] = 0;

 // Increase the hit counter

 hits++;

 // Tell the player that they have hit a ship and how many ships are left

 42

 cout << "Hit! " << (4-hits) << " left.\n\n";

 } else {

 // Tell the player that they missed

 cout << "Miss\n\n";

 }

 // Count how many turns the player has taken

 numberOfTurns++;

}

cout << "Victory!\n";

cout << "You won in " << numberOfTurns << " turns";

C++ Structures

Structures (also called structs) are a way to group several related variables into

one place. Each variable in the structure is known as a member of the structure.

Unlike an array, a structure can contain many different data types (int, string, bool,
etc.).

Create a Structure

To create a structure, use the struct keyword and declare each of its members

inside curly braces.

After the declaration, specify the name of the structure variable (myStructure in

the example below):

struct { // Structure declaration

 int myNum; // Member (int variable)

 string myString; // Member (string variable)
} myStructure; // Structure variable

Access Structure Members

To access members of a structure, use the dot syntax (.):

Example

Assign data to members of a structure and print it:

// Create a structure variable called myStructure

struct {

 int myNum;

 string myString;

} myStructure;

// Assign values to members of myStructure

 43

myStructure.myNum = 1;

myStructure.myString = "Hello World!";

// Print members of myStructure

cout << myStructure.myNum << "\n";

cout << myStructure.myString << "\n";

One Structure in Multiple Variables

You can use a comma (,) to use one structure in many variables:

struct {

 int myNum;

 string myString;

} myStruct1, myStruct2, myStruct3; // Multiple structure variables separated

with commas

This example shows how to use a structure in two different variables:

Example

Use one structure to represent two cars:

struct {

 string brand;

 string model;

 int year;

} myCar1, myCar2; // We can add variables by separating them with a comma

here

// Put data into the first structure

myCar1.brand = "BMW";

myCar1.model = "X5";

myCar1.year = 1999;

// Put data into the second structure

myCar2.brand = "Ford";

myCar2.model = "Mustang";

myCar2.year = 1969;

// Print the structure members

cout << myCar1.brand << " " << myCar1.model << " " << myCar1.year << "\n";

cout << myCar2.brand << " " << myCar2.model << " " << myCar2.year << "\n";

Named Structures

By giving a name to the structure, you can treat it as a data type. This means that

you can create variables with this structure anywhere in the program at any time.

To create a named structure, put the name of the structure right after
the struct keyword:

 44

struct myDataType { // This structure is named "myDataType"

 int myNum;

 string myString;

};

To declare a variable that uses the structure, use the name of the structure as the

data type of the variable:

myDataType myVar;

Example

Use one structure to represent two cars:

// Declare a structure named "car"

struct car {

 string brand;

 string model;

 int year;

};

int main() {

 // Create a car structure and store it in myCar1;

 car myCar1;

 myCar1.brand = "BMW";

 myCar1.model = "X5";

 myCar1.year = 1999;

 // Create another car structure and store it in myCar2;

 car myCar2;

 myCar2.brand = "Ford";

 myCar2.model = "Mustang";

 myCar2.year = 1969;

 // Print the structure members

 cout << myCar1.brand << " " << myCar1.model << " " << myCar1.year << "\n";

 cout << myCar2.brand << " " << myCar2.model << " " << myCar2.year << "\n";

 return 0;

}

Creating References

A reference variable is a "reference" to an existing variable, and it is created with

the & operator:

string food = "Pizza"; // food variable

string &meal = food; // reference to food

Now, we can use either the variable name food or the reference name meal to refer

to the food variable:

 45

Example

string food = "Pizza";

string &meal = food;

cout << food << "\n"; // Outputs Pizza
cout << meal << "\n"; // Outputs Pizza

Memory Address

In the example from the previous page, the & operator was used to create a reference

variable. But it can also be used to get the memory address of a variable; which is

the location of where the variable is stored on the computer.

When a variable is created in C++, a memory address is assigned to the variable.

And when we assign a value to the variable, it is stored in this memory address.

To access it, use the & operator, and the result will represent where the variable is

stored:

Example

string food = "Pizza";

cout << &food; // Outputs 0x6dfed4

Note: The memory address is in hexadecimal form (0x..). Note that you may not
get the same result in your program.

And why is it useful to know the memory address?

References and Pointers (which you will learn about in the next chapter) are

important in C++, because they give you the ability to manipulate the data in the
computer's memory - which can reduce the code and improve the

performance.

These two features are one of the things that make C++ stand out from other

programming languages, like Python and Java.

Creating Pointers

You learned from the previous chapter, that we can get the memory address of a

variable by using the & operator:

Example

string food = "Pizza"; // A food variable of type string

cout << food; // Outputs the value of food (Pizza)

cout << &food; // Outputs the memory address of food (0x6dfed4)

 46

A pointer however, is a variable that stores the memory address as its value.

A pointer variable points to a data type (like int or string) of the same type, and is

created with the * operator. The address of the variable you're working with is

assigned to the pointer:

Example

string food = "Pizza"; // A food variable of type string

string* ptr = &food; // A pointer variable, with the name ptr, that stores

the address of food

// Output the value of food (Pizza)

cout << food << "\n";

// Output the memory address of food (0x6dfed4)

cout << &food << "\n";

// Output the memory address of food with the pointer (0x6dfed4)

cout << ptr << "\n";

Example explained

Create a pointer variable with the name ptr, that points to a string variable, by

using the asterisk sign * (string* ptr). Note that the type of the pointer has to

match the type of the variable you're working with.

Use the & operator to store the memory address of the variable called food, and

assign it to the pointer.

Now, ptr holds the value of food's memory address.

Tip: There are three ways to declare pointer variables, but the first way is
preferred:

string* mystring; // Preferred

string *mystring;

string * mystring;

Get Memory Address and Value

In the example from the previous page, we used the pointer variable to get the

memory address of a variable (used together with the & reference operator).

However, you can also use the pointer to get the value of the variable, by using

the * operator (the dereference operator):

Example

string food = "Pizza"; // Variable declaration

string* ptr = &food; // Pointer declaration

// Reference: Output the memory address of food with the pointer (0x6dfed4)

cout << ptr << "\n";

 47

// Dereference: Output the value of food with the pointer (Pizza)

cout << *ptr << "\n";

Note that the * sign can be confusing here, as it does two different things in our

code:

 When used in declaration (string* ptr), it creates a pointer variable.
 When not used in declaration, it act as a dereference operator.

Modify the Pointer Value

You can also change the pointer's value. But note that this will also change the

value of the original variable:

Example

string food = "Pizza";

string* ptr = &food;

// Output the value of food (Pizza)

cout << food << "\n";

// Output the memory address of food (0x6dfed4)

cout << &food << "\n";

// Access the memory address of food and output its value (Pizza)

cout << *ptr << "\n";

// Change the value of the pointer

*ptr = "Hamburger";

// Output the new value of the pointer (Hamburger)

cout << *ptr << "\n";

// Output the new value of the food variable (Hamburger)

cout << food << "\n";

C++ Functions
A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

Functions are used to perform certain actions, and they are important for

reusing code: Define the code once, and use it many times.

 48

Create a Function

C++ provides some pre-defined functions, such as main(), which is used to execute

code. But you can also create your own functions to perform certain actions.

To create (often referred to as declare) a function, specify the name of the
function, followed by parentheses ():

Syntax

void myFunction() {

 // code to be executed

}

Example Explained

 myFunction() is the name of the function

 void means that the function does not have a return value. You will learn

more about return values later in the next chapter
 inside the function (the body), add code that defines what the function

should do

Call a Function

Declared functions are not executed immediately. They are "saved for later use",

and will be executed later, when they are called.

To call a function, write the function's name followed by two parentheses () and a

semicolon ;

In the following example, myFunction() is used to print a text (the action), when it is

called:

Example

Inside main, call myFunction():

// Create a function

void myFunction() {

 cout << "I just got executed!";

}

int main() {

 myFunction(); // call the function

 return 0;

}

// Outputs "I just got executed!"

A function can be called multiple times:

 49

Example

void myFunction() {

 cout << "I just got executed!\n";

}

int main() {

 myFunction();

 myFunction();

 myFunction();

 return 0;

}

// I just got executed!

// I just got executed!

// I just got executed!

Function Declaration and Definition

A C++ function consist of two parts:

 Declaration: the return type, the name of the function, and parameters (if

any)
 Definition: the body of the function (code to be executed)

void myFunction() { // declaration

 // the body of the function (definition)

}

Note: If a user-defined function, such as myFunction() is declared after

the main() function, an error will occur:

Example

int main() {

 myFunction();

 return 0;

}

void myFunction() {

 cout << "I just got executed!";

}

// Error

However, it is possible to separate the declaration and the definition of the function

- for code optimization.

 50

You will often see C++ programs that have function declaration above main(), and

function definition below main(). This will make the code better organized and easier

to read:

Example

// Function declaration

void myFunction();

// The main method

int main() {

 myFunction(); // call the function

 return 0;

}

// Function definition

void myFunction() {

 cout << "I just got executed!";
}

Parameters and Arguments

Information can be passed to functions as a parameter. Parameters act as variables

inside the function.

Parameters are specified after the function name, inside the parentheses. You can
add as many parameters as you want, just separate them with a comma:

Syntax

void functionName(parameter1, parameter2, parameter3) {

 // code to be executed

}

The following example has a function that takes a string called fname as

parameter. When the function is called, we pass along a first name, which is used
inside the function to print the full name:

Example

void myFunction(string fname) {

 cout << fname << " Refsnes\n";

}

int main() {

 myFunction("Liam");

 myFunction("Jenny");

 myFunction("Anja");

 return 0;

}

// Liam Refsnes

 51

// Jenny Refsnes

// Anja Refsnes

When a parameter is passed to the function, it is called an argument. So, from

the example above: fname is a parameter,

while Liam, Jenny and Anja are arguments.

Default Parameter Value

You can also use a default parameter value, by using the equals sign (=).

If we call the function without an argument, it uses the default value ("Norway"):

Example

void myFunction(string country = "Norway") {

 cout << country << "\n";

}

int main() {

 myFunction("Sweden");

 myFunction("India");

 myFunction();

 myFunction("USA");

 return 0;

}

// Sweden

// India

// Norway

// USA

A parameter with a default value, is often known as an "optional parameter".

From the example above, country is an optional parameter and "Norway" is the

default value.

Multiple Parameters

Inside the function, you can add as many parameters as you want:

Example

void myFunction(string fname, int age) {

 cout << fname << " Refsnes. " << age << " years old. \n";

}

int main() {

 myFunction("Liam", 3);

 myFunction("Jenny", 14);

 myFunction("Anja", 30);

 52

 return 0;

}

// Liam Refsnes. 3 years old.

// Jenny Refsnes. 14 years old.

// Anja Refsnes. 30 years old.

Note that when you are working with multiple parameters, the function call must

have the same number of arguments as there are parameters, and the arguments

must be passed in the same order.

Return Values

The void keyword, used in the previous examples, indicates that the function should

not return a value. If you want the function to return a value, you can use a data

type (such as int, string, etc.) instead of void, and use the return keyword inside

the function:

Example

int myFunction(int x) {

 return 5 + x;

}

int main() {

 cout << myFunction(3);

 return 0;

}

// Outputs 8 (5 + 3)

This example returns the sum of a function with two parameters:

Example

int myFunction(int x, int y) {

 return x + y;

}

int main() {

 cout << myFunction(5, 3);

 return 0;

}

// Outputs 8 (5 + 3)

You can also store the result in a variable:

 53

Example

int myFunction(int x, int y) {

 return x + y;

}

int main() {

 int z = myFunction(5, 3);

 cout << z;

 return 0;

}

// Outputs 8 (5 + 3)

Pass By Reference

In the examples from the previous page, we used normal variables when we

passed parameters to a function. You can also pass a reference to the function.
This can be useful when you need to change the value of the arguments:

Example

void swapNums(int &x, int &y) {

 int z = x;

 x = y;

 y = z;

}

int main() {

 int firstNum = 10;

 int secondNum = 20;

 cout << "Before swap: " << "\n";

 cout << firstNum << secondNum << "\n";

 // Call the function, which will change the values of firstNum and

secondNum

 swapNums(firstNum, secondNum);

 cout << "After swap: " << "\n";

 cout << firstNum << secondNum << "\n";

 return 0;

}

Pass Arrays as Function Parameters

You can also pass arrays to a function:

Example

void myFunction(int myNumbers[5]) {

 for (int i = 0; i < 5; i++) {

 54

 cout << myNumbers[i] << "\n";

 }

}

int main() {

 int myNumbers[5] = {10, 20, 30, 40, 50};

 myFunction(myNumbers);

 return 0;

}

Example Explained

The function (myFunction) takes an array as its parameter (int myNumbers[5]), and

loops through the array elements with the for loop.

When the function is called inside main(), we pass along the myNumbers array, which

outputs the array elements.

Note that when you call the function, you only need to use the name of the array

when passing it as an argument myFunction(myNumbers). However, the full declaration

of the array is needed in the function parameter (int myNumbers[5]).

Function Overloading

With function overloading, multiple functions can have the same name with

different parameters:

Example

int myFunction(int x)

float myFunction(float x)

double myFunction(double x, double y)

Consider the following example, which have two functions that add numbers of

different type:

Example

int plusFuncInt(int x, int y) {

 return x + y;

}

double plusFuncDouble(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFuncInt(8, 5);

 double myNum2 = plusFuncDouble(4.3, 6.26);

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 55

 return 0;

}

Instead of defining two functions that should do the same thing, it is better to

overload one.

In the example below, we overload the plusFunc function to work for

both int and double:

Example

int plusFunc(int x, int y) {

 return x + y;

}

double plusFunc(double x, double y) {

 return x + y;

}

int main() {

 int myNum1 = plusFunc(8, 5);

 double myNum2 = plusFunc(4.3, 6.26);

 cout << "Int: " << myNum1 << "\n";

 cout << "Double: " << myNum2;

 return 0;

}

Note: Multiple functions can have the same name as long as the number and/or

type of parameters are different.

Recursion

Recursion is the technique of making a function call itself. This technique provides a
way to break complicated problems down into simple problems which are easier to

solve.

Recursion may be a bit difficult to understand. The best way to figure out how it

works is to experiment with it.

Recursion Example

Adding two numbers together is easy to do, but adding a range of numbers is more

complicated. In the following example, recursion is used to add a range of numbers
together by breaking it down into the simple task of adding two numbers:

Example

int sum(int k) {

 if (k > 0) {

 return k + sum(k - 1);

 56

 } else {

 return 0;

 }

}

int main() {

 int result = sum(10);

 cout << result;

 return 0;

}

Example Explained

When the sum() function is called, it adds parameter k to the sum of all numbers

smaller than k and returns the result. When k becomes 0, the function just returns

0. When running, the program follows these steps:

10 + sum(9)

10 + (9 + sum(8))

10 + (9 + (8 + sum(7)))

...

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + sum(0)

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0

Since the function does not call itself when k is 0, the program stops there and

returns the result.

The developer should be very careful with recursion as it can be quite easy to slip
into writing a function which never terminates, or one that uses excess amounts of

memory or processor power. However, when written correctly recursion can be a
very efficient and mathematically-elegant approach to programming.

C++ What is OOP?

OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or functions that perform

operations on the data, while object-oriented programming is about creating
objects that contain both data and functions.

Object-oriented programming has several advantages over procedural
programming:

 OOP is faster and easier to execute

 OOP provides a clear structure for the programs
 OOP helps to keep the C++ code DRY "Don't Repeat Yourself", and makes

the code easier to maintain, modify and debug
 OOP makes it possible to create full reusable applications with less code and

shorter development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the repetition of

code. You should extract out the codes that are common for the application, and
place them at a single place and reuse them instead of repeating it.

 57

C++ What are Classes and Objects?

Classes and objects are the two main aspects of object-oriented programming.

Look at the following illustration to see the difference between class and objects:

So, a class is a template for objects, and an object is an instance of a class.

When the individual objects are created, they inherit all the variables and functions

from the class.

C++ Classes/Objects

C++ is an object-oriented programming language.

Everything in C++ is associated with classes and objects, along with its attributes
and methods. For example: in real life, a car is an object. The car has attributes,

such as weight and color, and methods, such as drive and brake.

Attributes and methods are basically variables and functions that belongs to the

class. These are often referred to as "class members".

A class is a user-defined data type that we can use in our program, and it works as

an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the class keyword:

 58

Example

Create a class called "MyClass":

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

Example explained

 The class keyword is used to create a class called MyClass.
 The public keyword is an access specifier, which specifies that members

(attributes and methods) of the class are accessible from outside the class.
You will learn more about access specifiers later.

 Inside the class, there is an integer variable myNum and a string

variable myString. When variables are declared within a class, they are

called attributes.

 At last, end the class definition with a semicolon ;.

Create an Object

In C++, an object is created from a class. We have already created the class

named MyClass, so now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object name.

To access the class attributes (myNum and myString), use the dot syntax (.) on the

object:

Example

Create an object called "myObj" and access the attributes:

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

int main() {

 MyClass myObj; // Create an object of MyClass

 // Access attributes and set values

 myObj.myNum = 15;

 myObj.myString = "Some text";

 // Print attribute values

 cout << myObj.myNum << "\n";

 cout << myObj.myString;

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

 59

 return 0;

}

Multiple Objects

You can create multiple objects of one class:

Example

// Create a Car class with some attributes

class Car {

 public:

 string brand;

 string model;

 int year;

};

int main() {

 // Create an object of Car

 Car carObj1;

 carObj1.brand = "BMW";

 carObj1.model = "X5";

 carObj1.year = 1999;

 // Create another object of Car

 Car carObj2;

 carObj2.brand = "Ford";

 carObj2.model = "Mustang";

 carObj2.year = 1969;

 // Print attribute values

 cout << carObj1.brand << " " << carObj1.model << " " <<

carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " <<

carObj2.year << "\n";

 return 0;

}

Class Methods

Methods are functions that belongs to the class.

There are two ways to define functions that belongs to a class:

 Inside class definition

 Outside class definition

In the following example, we define a function inside the class, and we name it

"myMethod".

Note: You access methods just like you access attributes; by creating an object of

the class and using the dot syntax (.):

 60

Inside Example

class MyClass { // The class

 public: // Access specifier

 void myMethod() { // Method/function defined inside the class

 cout << "Hello World!";

 }

};

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

To define a function outside the class definition, you have to declare it inside the
class and then define it outside of the class. This is done by specifiying the name of

the class, followed the scope resolution :: operator, followed by the name of the

function:

Outside Example

class MyClass { // The class

 public: // Access specifier

 void myMethod(); // Method/function declaration

};

// Method/function definition outside the class

void MyClass::myMethod() {

 cout << "Hello World!";

}

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

Parameters

You can also add parameters:

 Example

#include <iostream>

using namespace std;

class Car {

 public:

 int speed(int maxSpeed);

};

 61

int Car::speed(int maxSpeed) {

 return maxSpeed;

}

int main() {

 Car myObj; // Create an object of Car

 cout << myObj.speed(200); // Call the method with an argument

 return 0;

}

Constructors

A constructor in C++ is a special method that is automatically called when an

object of a class is created.

To create a constructor, use the same name as the class, followed by
parentheses ():

Example

class MyClass { // The class

 public: // Access specifier

 MyClass() { // Constructor

 cout << "Hello World!";

 }

};

int main() {

 MyClass myObj; // Create an object of MyClass (this will call the

constructor)

 return 0;

}

Note: The constructor has the same name as the class, it is always public, and it

does not have any return value.

Constructor Parameters

Constructors can also take parameters (just like regular functions), which can be

useful for setting initial values for attributes.

The following class have brand, model and year attributes, and a constructor with

different parameters. Inside the constructor we set the attributes equal to the

constructor parameters (brand=x, etc). When we call the constructor (by creating an

object of the class), we pass parameters to the constructor, which will set the value
of the corresponding attributes to the same:

 62

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z) { // Constructor with parameters

 brand = x;

 model = y;

 year = z;

 }

};

int main() {

 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " <<

carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " <<

carObj2.year << "\n";

 return 0;

}

Just like functions, constructors can also be defined outside the class. First, declare

the constructor inside the class, and then define it outside of the class by specifying
the name of the class, followed by the scope resolution :: operator, followed by the

name of the constructor (which is the same as the class):

Example

class Car { // The class

 public: // Access specifier

 string brand; // Attribute

 string model; // Attribute

 int year; // Attribute

 Car(string x, string y, int z); // Constructor declaration

};

// Constructor definition outside the class

Car::Car(string x, string y, int z) {

 brand = x;

 model = y;

 year = z;

}

int main() {

 // Create Car objects and call the constructor with different values

 Car carObj1("BMW", "X5", 1999);

 Car carObj2("Ford", "Mustang", 1969);

 63

 // Print values

 cout << carObj1.brand << " " << carObj1.model << " " <<

carObj1.year << "\n";

 cout << carObj2.brand << " " << carObj2.model << " " <<

carObj2.year << "\n";

 return 0;
}

Access Specifiers

By now, you are quite familiar with the public keyword that appears in all of our

class examples:

Example

class MyClass { // The class

 public: // Access specifier

 // class members goes here

};

The public keyword is an access specifier. Access specifiers define how the

members (attributes and methods) of a class can be accessed. In the example
above, the members are public - which means that they can be accessed and

modified from outside the code.

However, what if we want members to be private and hidden from the outside
world?

In C++, there are three access specifiers:

 public - members are accessible from outside the class

 private - members cannot be accessed (or viewed) from outside the class

 protected - members cannot be accessed from outside the class, however,

they can be accessed in inherited classes. You will learn more
about Inheritance later.

In the following example, we demonstrate the differences

between public and private members:

Example

class MyClass {

 public: // Public access specifier

 int x; // Public attribute

 private: // Private access specifier

 int y; // Private attribute

};

int main() {

 MyClass myObj;

 myObj.x = 25; // Allowed (public)

https://www.w3schools.com/cpp/cpp_inheritance.asp

 64

 myObj.y = 50; // Not allowed (private)

 return 0;

}

If you try to access a private member, an error occurs:

error: y is private

Note: It is possible to access private members of a class using a public method
inside the same class. See the next chapter (Encapsulation) on how to do this.

Tip: It is considered good practice to declare your class attributes as private (as
often as you can). This will reduce the possibility of yourself (or others) to mess up

the code. This is also the main ingredient of the Encapsulation concept, which you
will learn more about in the next chapter.

Note: By default, all members of a class are private if you don't specify an access

specifier:

Example

class MyClass {

 int x; // Private attribute

 int y; // Private attribute
};

Encapsulation

The meaning of Encapsulation, is to make sure that "sensitive" data is hidden from

users. To achieve this, you must declare class variables/attributes as private (cannot

be accessed from outside the class). If you want others to read or modify the value

of a private member, you can provide public get and set methods.

Access Private Members

To access a private attribute, use public "get" and "set" methods:

Example

#include <iostream>

using namespace std;

class Employee {

 private:

 // Private attribute

 int salary;

 public:

 // Setter

 void setSalary(int s) {

 salary = s;

 }

 65

 // Getter

 int getSalary() {

 return salary;

 }

};

int main() {

 Employee myObj;

 myObj.setSalary(50000);

 cout << myObj.getSalary();

 return 0;

}

Example explained

The salary attribute is private, which have restricted access.

The public setSalary() method takes a parameter (s) and assigns it to

the salary attribute (salary = s).

The public getSalary() method returns the value of the private salary attribute.

Inside main(), we create an object of the Employee class. Now we can use

the setSalary() method to set the value of the private attribute to 50000. Then we

call the getSalary() method on the object to return the value.

Why Encapsulation?

 It is considered good practice to declare your class attributes as private (as
often as you can). Encapsulation ensures better control of your data, because

you (or others) can change one part of the code without affecting other parts
 Increased security of data

Abstraction

Data abstraction is one of the most essential and important features of object-

oriented programming in C++. Abstraction means displaying only essential
information and hiding the details. Data abstraction refers to providing only essential

information about the data to the outside world, hiding the background details or
implementation.

Consider a real-life example of a man driving a car. The man only knows that pressing

the accelerator will increase the speed of the car or applying brakes will stop the car
but he does not know how on pressing the accelerator the speed is actually

increasing, he does not know about the inner mechanism of the car or the
implementation of the accelerator, brakes, etc in the car. This is what abstraction is.

Types of Abstraction:

 66

1. Data abstraction – This type only shows the required information about the
data and hides the unnecessary data.

2. Control Abstraction – This type only shows the required information about
the implementation and hides unnecessary information.

Abstraction using Classes

We can implement Abstraction in C++ using classes. The class helps us to group

data members and member functions using available access specifiers. A Class can
decide which data member will be visible to the outside world and which is not.

Abstraction in Header files

One more type of abstraction in C++ can be header files. For example, consider the
pow() method present in math.h header file. Whenever we need to calculate the

power of a number, we simply call the function pow() present in the math.h header
file and pass the numbers as arguments without knowing the underlying algorithm

according to which the function is actually calculating the power of numbers.

Abstraction using Access Specifiers

Access specifiers are the main pillar of implementing abstraction in C++. We can use
access specifiers to enforce restrictions on class members. For example:

Members declared as public in a class can be accessed from anywhere in the

program.

Members declared as private in a class, can be accessed only from within the class.
They are not allowed to be accessed from any part of the code outside the class.

We can easily implement abstraction using the above two features provided by

access specifiers. Say, the members that define the internal implementation can be
marked as private in a class. And the important information needed to be given to

the outside world can be marked as public. And these public members can access
the private members as they are inside the class.

Difference between Abstraction and Encapsulation

In OOPs, Abstraction is the method of getting information where the information
needed will be taken in such a simplest way that solely the required components are

extracted, and also the ones that are considered less significant are unnoticed. The
concept of abstraction only shows necessary information to the users. It reduces the

complexity of the program by hiding the implementation complexities of programs.

Example of Abstraction:

#include <iostream>
using namespace std;

class Summation {

private:

 67

 // private variables
 int a, b, c;

public:
 void sum(int x, int y)

 {
 a = x;

 b = y;
 c = a + b;

 cout<<"Sum of the two number is : "<<c<<endl;
 }

};
int main()

{
 Summation s;

 s.sum(5, 4);
 return 0;

}

Output:

Sum of the two number is: 9

In the this example, we can see that abstraction has achieved by using class. The

class ‘Summation’ holds the private members a, b and c, which are only accessible
by the member functions of that class.

Encapsulation is the process or method to contain the information. Encapsulation is
a method to hide the data in a single entity or unit along with a method to protect

information from outside world. This method encapsulates the data and function

together inside a class which also results in data abstraction.

Example of Encapsulation:

#include <iostream>
using namespace std;

class EncapsulationExample {

private:
 // we declare a as private to hide it from outside

 int a;

public:
 // set() function to set the value of a

 void set(int x)
 {

 a = x;
 }

 // get() function to return the value of a
 int get()

 {
 return a;

 }

 68

};

// main function
int main()

{
 EncapsulationExample e1;

 e1.set(10);

 cout<<e1.get();

 return 0;
}

Output:

10

In the this program, the variable a is made private so that this variable can be

accessed and manipulated only by using the methods get() and set() that are
present within the class. Therefore we can say that, the variable a and the methods

set() as well as get() have binded together that is nothing but encapsulation.

S.NO Abstraction Encapsulation
1. Abstraction is the process or

method of gaining the
information.

While encapsulation is the process or
method to contain the information.

2. In abstraction, problems are
solved at the design or interface

level.

While in encapsulation, problems are
solved at the implementation level.

3. Abstraction is the method of
hiding the unwanted

information.

Whereas encapsulation is a method to
hide the data in a single entity or unit

along with a method to protect information
from outside.

4. We can implement abstraction
using abstract class and

interfaces.

Whereas encapsulation can be
implemented using by access modifier i.e.

private, protected and public.

5. In abstraction, implementation
complexities are hidden using

abstract classes and interfaces.

While in encapsulation, the data is hidden
using methods of getters and setters.

6. The objects that help to perform
abstraction are encapsulated.

Whereas the objects that result in
encapsulation need not be abstracted.

Inheritance

In C++, it is possible to inherit attributes and methods from one class to another.
We group the "inheritance concept" into two categories:

 derived class (child) - the class that inherits from another class
 base class (parent) - the class being inherited from

To inherit from a class, use the : symbol.

 69

In the example below, the Car class (child) inherits the attributes and methods from

the Vehicle class (parent):

Example

// Base class

class Vehicle {

 public:

 string brand = "Ford";

 void honk() {

 cout << "Tuut, tuut! \n" ;

 }

};

// Derived class

class Car: public Vehicle {

 public:

 string model = "Mustang";

};

int main() {

 Car myCar;

 myCar.honk();

 cout << myCar.brand + " " + myCar.model;

 return 0;
}

Why And When To Use "Inheritance"?

- It is useful for code reusability: reuse attributes and methods of an existing class

when you create a new class.

Multilevel Inheritance

A class can also be derived from one class, which is already derived from another

class.

In the following example, MyGrandChild is derived from class MyChild (which is derived

from MyClass).

Example

// Base class (parent)

class MyClass {

 public:

 void myFunction() {

 cout << "Some content in parent class." ;

 }

};

// Derived class (child)

class MyChild: public MyClass {

};

 70

// Derived class (grandchild)

class MyGrandChild: public MyChild {

};

int main() {

 MyGrandChild myObj;

 myObj.myFunction();

 return 0;

}

Multiple Inheritance

A class can also be derived from more than one base class, using a comma-

separated list:

Example

// Base class

class MyClass {

 public:

 void myFunction() {

 cout << "Some content in parent class." ;

 }

};

// Another base class

class MyOtherClass {

 public:

 void myOtherFunction() {

 cout << "Some content in another class." ;

 }

};

// Derived class

class MyChildClass: public MyClass, public MyOtherClass {

};

int main() {

 MyChildClass myObj;

 myObj.myFunction();

 myObj.myOtherFunction();

 return 0;
}

Access Specifiers

You learned from the Access Specifiers chapter that there are three specifiers

available in C++. Until now, we have only used public (members of a class are

accessible from outside the class) and private (members can only be accessed

within the class). The third specifier, protected, is similar to private, but it can also

be accessed in the inherited class:

 71

Example

// Base class

class Employee {

 protected: // Protected access specifier

 int salary;

};

// Derived class

class Programmer: public Employee {

 public:

 int bonus;

 void setSalary(int s) {

 salary = s;

 }

 int getSalary() {

 return salary;

 }

};

int main() {

 Programmer myObj;

 myObj.setSalary(50000);

 myObj.bonus = 15000;

 cout << "Salary: " << myObj.getSalary() << "\n";

 cout << "Bonus: " << myObj.bonus << "\n";

 return 0;

}

Polymorphism

Polymorphism means "many forms", and it occurs when we have many classes that

are related to each other by inheritance.

Like we specified in the previous chapter; Inheritance lets us inherit attributes and

methods from another class. Polymorphism uses those methods to perform
different tasks. This allows us to perform a single action in different ways.

For example, think of a base class called Animal that has a method

called animalSound(). Derived classes of Animals could be Pigs, Cats, Dogs, Birds -

And they also have their own implementation of an animal sound (the pig oinks,

and the cat meows, etc.):

Example

// Base class

class Animal {

 public:

 void animalSound() {

 cout << "The animal makes a sound \n";

 }

};

 72

// Derived class

class Pig : public Animal {

 public:

 void animalSound() {

 cout << "The pig says: wee wee \n";

 }

};

// Derived class

class Dog : public Animal {

 public:

 void animalSound() {

 cout << "The dog says: bow wow \n";

 }
};

Remember from the Inheritance chapter that we use the : symbol to inherit from a

class.

Now we can create Pig and Dog objects and override the animalSound() method:

Example

// Base class

class Animal {

 public:

 void animalSound() {

 cout << "The animal makes a sound \n";

 }

};

// Derived class

class Pig : public Animal {

 public:

 void animalSound() {

 cout << "The pig says: wee wee \n";

 }

};

// Derived class

class Dog : public Animal {

 public:

 void animalSound() {

 cout << "The dog says: bow wow \n";

 }

};

int main() {

 Animal myAnimal;

 Pig myPig;

 Dog myDog;

 myAnimal.animalSound();

 myPig.animalSound();

https://www.w3schools.com/cpp/cpp_inheritance.asp

 73

 myDog.animalSound();

 return 0;
}

Why And When To Use "Inheritance" and "Polymorphism"?

- It is useful for code reusability: reuse attributes and methods of an existing class

when you create a new class.

C++ Files

The fstream library allows us to work with files.

To use the fstream library, include both the

standard <iostream> AND the <fstream> header file:

Example

#include <iostream>

#include <fstream>

There are three classes included in the fstream library, which are used to create,

write or read files:

Class Description

ofstream Creates and writes to files

ifstream Reads from files

fstream A combination of ofstream and ifstream: creates, reads, and writes to files

Create and Write To a File

To create a file, use either the ofstream or fstream class, and specify the name of the

file.

To write to the file, use the insertion operator (<<).

Example

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 // Create and open a text file

 ofstream MyFile("filename.txt");

 // Write to the file

 MyFile << "Files can be tricky, but it is fun enough!";

 74

 // Close the file

 MyFile.close();
}

Why do we close the file?

It is considered good practice, and it can clean up unnecessary memory space.

Read a File

To read from a file, use either the ifstream or fstream class, and the name of the file.

Note that we also use a while loop together with the getline() function (which

belongs to the ifstream class) to read the file line by line, and to print the content of

the file:

Example

// Create a text string, which is used to output the text file

string myText;

// Read from the text file

ifstream MyReadFile("filename.txt");

// Use a while loop together with the getline() function to read the file

line by line

while (getline (MyReadFile, myText)) {

 // Output the text from the file

 cout << myText;

}

// Close the file
MyReadFile.close();

C++ Exceptions

When executing C++ code, different errors can occur: coding errors made by the
programmer, errors due to wrong input, or other unforeseeable things.

When an error occurs, C++ will normally stop and generate an error message. The
technical term for this is: C++ will throw an exception (throw an error).

C++ try and catch

Exception handling in C++ consist of three keywords: try, throw and catch:

The try statement allows you to define a block of code to be tested for errors while

it is being executed.

The throw keyword throws an exception when a problem is detected, which lets us

create a custom error.

 75

The catch statement allows you to define a block of code to be executed, if an error

occurs in the try block.

The try and catch keywords come in pairs:

Example

try {

 // Block of code to try

 throw exception; // Throw an exception when a problem arise

}

catch () {

 // Block of code to handle errors
}

Consider the following example:

Example

try {

 int age = 15;

 if (age >= 18) {

 cout << "Access granted - you are old enough.";

 } else {

 throw (age);

 }

}

catch (int myNum) {

 cout << "Access denied - You must be at least 18 years old.\n";

 cout << "Age is: " << myNum;
}

Example explained

We use the try block to test some code: If the age variable is less than 18, we

will throw an exception, and handle it in our catch block.

In the catch block, we catch the error and do something about it.

The catch statement takes a parameter: in our example we use an int variable

(myNum) (because we are throwing an exception of int type in the try block (age)), to

output the value of age.

If no error occurs (e.g. if age is 20 instead of 15, meaning it will be be greater than

18), the catch block is skipped:

Example

int age = 20;

You can also use the throw keyword to output a reference number, like a custom

error number/code for organizing purposes:

 76

Example

try {

 int age = 15;

 if (age >= 18) {

 cout << "Access granted - you are old enough.";

 } else {

 throw 505;

 }

}

catch (int myNum) {

 cout << "Access denied - You must be at least 18 years old.\n";

 cout << "Error number: " << myNum;
}

Handle Any Type of Exceptions (...)

If you do not know the throw type used in the try block, you can use the "three

dots" syntax (...) inside the catch block, which will handle any type of exception:

Example

try {

 int age = 15;

 if (age >= 18) {

 cout << "Access granted - you are old enough.";

 } else {

 throw 505;

 }

}

catch (...) {

 cout << "Access denied - You must be at least 18 years old.\n";
}

Operator Overloading

In C++, Operator overloading is a compile-time polymorphism. It is an idea of

giving special meaning to an existing operator in C++ without changing its original

meaning.

In this article, we will further discuss about operator overloading in C++ with

examples and see which operators we can or cannot overload in C++.

Implementation:

// C++ Program to Demonstrate the

// working/Logic behind Operator

// Overloading

class A {

 statements;

 77

};

int main()

{

 A a1, a2, a3;

 a3 = a1 + a2;

 return 0;

}

In this example, we have 3 variables “a1”, “a2” and “a3” of type “class A”. Here we

are trying to add two objects “a1” and “a2”, which are of user-defined type i.e. of

type “class A” using the “+” operator. This is not allowed, because the addition
operator “+” is predefined to operate only on built-in data types. But here, “class

A” is a user-defined type, so the compiler generates an error. This is where the
concept of “Operator overloading” comes in.

Now, if the user wants to make the operator “+” add two class objects, the user
has to redefine the meaning of the “+” operator such that it adds two class objects.

This is done by using the concept of “Operator overloading”. So the main idea
behind “Operator overloading” is to use C++ operators with class variables or class

objects. Redefining the meaning of operators really does not change their original
meaning; instead, they have been given additional meaning along with their
existing ones.

1. Overloading Unary Operator

Let us consider overloading (-) unary operator. In the unary operator function, no

arguments should be passed. It works only with one class object. It is the
overloading of an operator operating on a single operand.

Example: Assume that class Distance takes two member objects i.e. feet and

inches, and creates a function by which the Distance object should decrement the

value of feet and inches by 1 (having a single operand of Distance Type).

// C++ program to show unary

// operator overloading

#include <iostream>

using namespace std;

class Distance {

public:

 int feet, inch;

 // Constructor to initialize

 // the object's value

 78

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Overloading(-) operator to

 // perform decrement operation

 // of Distance object

 void operator-()

 {

 feet--;

 inch--;

 cout << "\n Feet & Inches(Decrement): " <<

 feet << "'" << inch;

 }

};

// Driver Code

int main()

{

 Distance d1(8, 9);

 // Use (-) unary operator by

 // single operand

 -d1;

 return 0;

}

Output

Feet & Inches(Decrement): 7'8

Note: d2 = -d1 will not work, because operator-() does not return any value.

2. Overloading Binary Operator

In the binary operator overloading function, there should be one argument to be

passed. It is the overloading of an operator operating on two operands. Below is

the C++ program to show the overloading of the binary operator (+) using a class
Distance with two distant objects.

 79

// C++ program to show binary

// operator overloading

#include <iostream>

using namespace std;

class Distance {

public:

 int feet, inch;

 Distance()

 {

 this->feet = 0;

 this->inch = 0;

 }

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Overloading (+) operator to

 // perform addition of two distance

 // object

 // Call by reference

 Distance operator+(Distance& d2)

 {

 // Create an object to return

 Distance d3;

 d3.feet = this->feet + d2.feet;

 d3.inch = this->inch + d2.inch;

 // Return the resulting object

 return d3;

 80

 }

};

// Driver Code

int main()

{

 Distance d1(8, 9);

 Distance d2(10, 2);

 Distance d3;

 // Use overloaded operator

 d3 = d1 + d2;

 cout << "\nTotal Feet & Inches: " <<

 d3.feet << "'" << d3.inch;

 return 0;

}

Output

Total Feet & Inches: 18'11

Criteria/Rules to Define the Operator Function

1. In the case of a non-static member function, the binary operator should

have only one argument and the unary should not have an argument.

2. In the case of a friend function, the binary operator should have only two

arguments and the unary should have only one argument.

3. Operators that cannot be overloaded are .* :: ?:

4. Operators that cannot be overloaded when declaring that function as friend

function are = () [] ->.

5. The operator function must be either a non-static (member function), global

free function or a friend function.

Almost all operators can be overloaded except a few. Following is the list of

operators that cannot be overloaded.

sizeof

 81

typeid

Scope resolution (::)

Class member access operators (.(dot), .* (pointer to member operator))

Ternary or conditional (?:)

Difference between Operator Functions and Normal Functions

Operator functions are the same as normal functions. The only differences are, that

the name of an operator function is always the operator keyword followed by the
symbol of the operator, and operator functions are called when the corresponding

operator is used.

If you want, you can give your financial support to UPCISS by making payment

on this QR code, Thank you...

नोट्स बनाने में बहुत मेहनत लगी है , इसललए यलि आप कुछ शुल्क 100, 200 रूपए जो

आपको उलित लगता है pay कर सकते है, अगर आप सक्षम है तो, धन्यवाि ।

